Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

An Update on Continuing Progress Towards Heavy-Duty Low NOX and CO2 in 2027 and Beyond

2023-04-11
2023-01-0357
Despite considerable progress towards clean air in previous decades, parts of the United States continue to struggle with the challenge of meeting the ambient air quality targets for smog-forming ozone mandated by the U.S. EPA, with some of the most significant challenges being seen in California. These continuing issues have highlighted the need for further reductions in emissions of NOX, which is a precursor for ozone formation, from a number of key sectors including the commercial vehicle sector. In response, the California Air Resources Board (CARB) embarked on a regulatory effort culminating in the adoption of the California Heavy-Duty Low NOX Omnibus regulation.[1] This regulatory effort was supported by a series of technical programs conducted at Southwest Research Institute (SwRI).
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
Journal Article

Impact of Second NH3 Storage Site on SCR NO x Conversion in an Ultra-Low NO x Aftertreatment System

2023-04-11
2023-01-0367
Typical two-site storage-based SCR plant models in literature consider NH3 stored in the first site to participate in NH3 storage, NOx conversion and second site to only participate in NH3 storage passively. This paper focuses on quantifying the impact of stored NH3 in the second site on the overall NOx conversion for an ultra-low NOx system due to intra site NH3 mass transfer. Accounting for this intra site mass transfer leads to better prediction of SCR out NH3 thus ensuring compliance with NH3 coverage targets and improved dosing characteristics of the controller that is critical to achieving ultra-low NOx standard. The stored NH3 in the second site undergoes mass transfer to the first site during temperature ramps encountered in a transient cycle that leads to increased NOx conversion in conditions where the dosing is switched off. The resultant NH3 coverage fraction prediction is critical in dosing control of SCR.
Journal Article

A One-Way Coupled Modeling Method to Simulate Battery Pack Thermal Runaway Initiated by an External Impact

2023-04-11
2023-01-0593
There is an ongoing proliferation of electric and electrified vehicles as manufacturers seek to reduce their carbon footprint and meet the carbon reduction targets mandated by governments around the world. An ongoing challenge in electric vehicle design is the efficient and safe design of battery packs. There are significant safety challenges for lithium battery packs relating to thermal runaway, which can be initiated through overheating and internal short from defects or external damage. This work proposes a robust method to couple the mechanical damage in a battery module calculated from a dynamic model with a thermal model of the battery that includes heating from electro-chemical sources as well as Arrhenius reactions from the battery cells. The authors identify the main sources of thermal runaway initiation and propagation in an impact scenario simulating a vehicle collision. The modeling approach was developed and validated using test data.
Technical Paper

Comparison of Representative Wet and Dry Fire Suppressants to Retard Fire Propagation in Lithium-Ion Modules Initiated by Overcharge Abuse

2023-04-11
2023-01-0520
Overcharging lithium-ion batteries is a failure mode that is observed if the battery management system (BMS) or battery charger fails to stop the charging process as intended. Overcharging can easily lead to thermal runaway in a battery. In this paper, nickel manganese cobalt (NMC) battery modules from the Chevrolet Bolt, lithium manganese oxide (LMO) battery modules from the Chevrolet Volt, and lithium iron phosphate (LFP) battery modules from a hybrid transit bus were overcharged. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages, gaseous emissions, and feedback from volatile organic compound (VOC) sensors. Overcharging a battery can cause lithium plating and other exothermic reactions that will lead to thermal runaway.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

The DAAAC Protocol: A Procedure for Developing Accelerated Aging Cycles for Diesel Aftertreatment

2022-08-30
2022-01-1017
Accelerated aging of automotive gasoline emissions catalysts has been performed on bench engines for decades. The EPA regulations include an accelerated aging cycle called the Standard Bench Cycle (SBC) that is modeled on the RAT-A cycle developed by GM Corp. and published in 1988. However, this cycle cannot be used for diesel aftertreatment components because it is based on stoichiometric operation, whereas diesel engines typically operate under excess air (lean) conditions. The need for accelerated aging cycles for diesel emissions systems can be illustrated by considering that the full useful life (FUL) requirement in the United States for an on-highway truck is 435,000 miles, and an off-road application may be 8,000 hours. With the recent CARB Omibus legislation, the durability duration will be increasing for on-road applications by as much as 80 percent in the next decade.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Detailed Emissions Characterization for Off-Road Applications: A DPF and non-DPF Engine Comparison

2022-03-29
2022-01-0585
As agencies continue to focus on emissions compliance, low NOX discussions have started to propagate beyond the on-highway market. Nonroad applications, which contribute to 29% of the PM emissions and 11% of the NOX emissions in California, are being reviewed to understand the technological challenges and requirements for improved emissions performance. To help facilitate a nonroad low NOX technology demonstration, information from current engine and aftertreatment technologies required a detailed assessment. The following work will discuss the emissions characterization results from two non-road engine platforms. The intention of this study was to compare the emissions species from different approaches designed to meet Tier 4 emissions regulations. The platforms reflect available technology for DPF and non-DPF aftertreatment architectures.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

Meeting Future NOX Emissions Over Various Cycles Using a Fuel Burner and Conventional Aftertreatment System

2022-03-29
2022-01-0539
The commercial vehicle industry continues to move in the direction of improving brake thermal efficiency while meeting more stringent diesel engine emission requirements. This study focused on demonstrating future emissions by using an exhaust burner upstream of a conventional aftertreatment system. This work highlights system results over the low load cycle (LLC) and many other pertinent cycles (Beverage Cycle, and Stay Hot Cycle, New York Bus Cycle). These efforts complement previous works showing system performance over the Heavy-Duty FTP and World Harmonized Transient Cycle (WHTC). The exhaust burner is used to raise and maintain the Selective Catalytic Reduction (SCR) catalyst at its optimal temperature over these cycles for efficient NOX reduction. This work showed that tailpipe NOX is significantly improved over these cycles with the exhaust burner.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Journal Article

Fuel Additive Transport into Engine Oil Determination using Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC)

2021-09-21
2021-01-1149
The transport of fuel-borne additives into the engine oil is a critical factor for the efficacy with which the additive functionality can be imparted on the engine. This paper describes the combination of Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC) to determine the real-time additive concentrations and transfer ratios in a spark-ignition, 2-liter GM LHU engine. The current research used a continuous sample circuit from the engine sump which passed through an integrating cavity flow cell to enhance the LIF signal. In the absence of a fluorescence signature of any of the native additive species, a suitable fluorescing dye was selected to simulate the additive. After establishing rigorous calibration curves, LC was employed as a referee method to do a direct comparison with the LIF determined dye concentrations.
Technical Paper

Development of an Intake Valve Deposit Test with a GM LE9 2.4L Engine

2021-09-21
2021-01-1186
The U.S. Environmental Protection Agency (EPA) certifies gasoline deposit control additives for intake valve deposit (IVD) control utilizing ASTM D5500, a vehicle test using a1985 BMW 318i. Concerns with the age of the test fleet, its relevance in the market today, and the availability of replacement parts led the American Chemistry Council’s (ACC) Fuel Additive Task Group (FATG) to begin a program to develop a replacement. General Motors suggested using a 2.4L LE9 test engine mounted on a dynamometer and committed to support the engine until 2030. Southwest Research Institute (SwRI®) was contracted to run the development program in four Phases. In Phase I, the engine test stand was configured, and a test fuel selected. In Phase II, a series of tests were run to identify a cycle that would build an acceptable level of deposits on un-additized fuel. In Phase III, the resultant test cycle was examined for repeatability.
X